
There Is No Ideal Virus Scanner

Dr. Mark A. Ludwig

September 15, 1992

Abstract

A simple corrolary to the classic halting problem for a Turing machine proves that one cannot write a

computer virus scanner which can identify computer viruses with 100% accuracy.

One can mathematically prove that a computer program cannot accurately determine whether or

not another given program has a virus in it by passive examination. (The problem is very similar to the

halting problem for a Turing machine,
1
 and the proof goes along the same lines.) In layman�s terms,

an ideal scanner is a mathematical impossibility. To demonstrate such an assertion, we first define a

virus and an operating environment in general terms:

An operating environment consists of an operating system on a computer and any relevant application

programs which are resident on a computer system and are normally executed under that operating

system.

A virus is any program which, when run, modifies the operating environment (apart from itself).

We say that a program P spreads a virus on input x if running P in the operating environment with

input x (designated P(x)) alters the operating environment. A program is safe for input x if it does

not spread a virus for input x. A program is safe if it does not spread a virus for all possible inputs.

Generally speaking, the input of program P, designated by x, represents all inputs to the program,

including any system information provided to the program by the operating system, any keystrokes

passed to the program, data files and audio or video input fed to it, data passed to it through the internet,

etc. All of this data is digitizable into what is essentially one huge binary number, x. The program P

itself is written using the notation of functions since the program, given the input x, will likewise generate

some output which can be digitized (provided, of course, that the program halts, providing finite output)

and represented as a number.

Obviously ours are very general definitions�more general than we are used to when defining

viruses�but they are all that is necessary to prove our point. What we generally call a virus is a program

that modifies a part of its environment specifically by infecting another application program, so that

the (now infected) application program will in turn modify its environment by infecting the next

application program, etc. In other words, our definition of a virus above does not say anything about

self-replication. It includes, for example, a Trojan Horse program that simply wipes out all of the

application programs. What our definition does is draw a line between an ordinary application program,

which makes modifications restricted to its own code and to associated data files, and programs that

modify other things. Every self-replicating program that attaches itself to other programs falls within

this definition because it either modifies other application programs or the operating system itself. If

we can prove a statement about a virus as defined here, it will apply to all self-replicating code such as

is normally considered to be a virus, it will apply to all Trojan Horse programs, etc.

One further assumption is necessary: the assumption that a virus is possible. This is essentially a

function of the operating environment, and it need not always be the case with a computerized device.

For example, if the operating environment could not be modified (as might be the case in a ROM-based

microcontroller which never allowed any program but that stored in its ROM to run) then a virus is

not possible. Given that a virus is possible, we can state the following theorem:

Theorem: There is no program SCAN(P,x) which will correctly determine whether any given program

P is safe for input x.

In order to prove this theorem, let us first invent a numbering system for programs and inputs.

Since programs essentially consist of binary information, they can be sequentially ordered: 1, 2, 3, 4 .

. . etc. For example, since a program on a PC is just a file of bytes, all those bytes strung together could

be considered to be a large positive integer. Most useful programs will be represented by ridiculously

large numbers, but that is no matter. Likewise, inputs, which may consist of data files, keystroke, I/O

from the COM port, etc., being nothing but binary data, can be sequentially ordered in the same

fashion. Within this framework, let us assume SCAN(P,x) exists. SCAN(P,x) is simply a function of

two positive integers:

 0 if P(x) is safe

SCAN(P,x) =

 1 if P(x) spreads a virus

We can write SCAN in tabular for like this:

 X
 0 1 2 3 4 5 6
P
0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0
2 0 1 1 0 0 0 0
3 1 1 1 1 1 1 1
4 0 0 0 0 0 0 0
5 1 0 0 1 0 0 0
6 0 0 1 0 0 0 0

This table shows the output of our hypothetical SCAN for every conceivable program and every

conceivable input. The problem is that we can construct a program V with input x as follows:

 Terminate if SCAN(x,x) = 1

V(x) =

 Spread a virus if SCAN(x,x) = 0

(remember, the parameters in SCAN are just positive integers). This construction is known as the Cantor

diagonal slash. We have defined a program which, for input x, has

SCAN(V,x) = SCAN(x,x)

Thus its values in the table for SCAN should always be exactly opposite to the diagonal values in the

table for SCAN:

{

{

2 There Is No Ideal Virus Scanner

 X
 0 1 2 3 4 5 6
P
0 0 0 0 0 0 0 0 . . .
1 0 0 1 0 1 0 0
2 0 1 1 0 0 0 0
3 1 1 1 1 1 1 1
4 0 0 0 0 0 0 0
5 1 0 0 1 0 0 0
6 0 0 1 0 0 0 0
. .
. .
. .
V 1 1 0 0 1 1 1 . . . ?

The problem here is that�since V is just another program, represented by a number�we must have

SCAN(V,V) = SCAN(V,V) as represented by the question mark in the table above. This is an obvious

contradiction. Since the construction of V(x) is straightforward, the only possible conclusion is that our

function SCAN does not exist. This proves the theorem.

We must conclude that an ideal virus scanner is a mathematical impossibility. Any real scanner

must either fail to catch some viruses or flag some programs as unsafe even though they are, in fact,

safe. Such are the inherent limitations of scanners.

However, all is not lost. Although the program V above beats the scanner SCAN, one can construct

a new scanner SCAN2, which can improve on SCAN and in corporate V into its scheme. The trouble

is, our theorem just says that there will be some other program V2 that will fool SCAN2. So, although

there may be no virus which can fool all conceivable scanners, a new scanner can be written that will

catch any given virus. The scanner / virus game is mathematically guaranteed to be endless. That is

good news for the antivirus developers, because they�ll always be able to sell updates, but bad news for

the computer user. One should remember to keep their scanner up to date, and understand that it is

always vulnerable to new attacks, no matter how bullet-proof anyone claims it is.

Notes:

1. A lucid and easy to find introduction to the halting problem and Turing machines in general is

presented in Roger Penrose, The Emperor�s New Mind, (Oxford University Press, New York: 1989).

2. The theorem and proof presented here are adapted from William F. Dowling, �There Are No Safe

Virus Tests,� The Teaching of Mathematics, (November, 1989), p. 835.

There Is No Ideal Virus Scanner 3

